[home] [Impressum]

GEF 2020/1.1

General description of fission observables. Released July 30, 2020.
Revision: August 21, 2020. (List of isomers in GEF from JEFF-3.3 was not complete.)
Revision: September 8, 2020. (Some technical modifications, no change in physics.)
Revision: September 18, 2020. (Correction in reading input files with tabs.)
Update: May 29, 2021. (Complete output of mass-dependent gamma multiplicities.)

Short characterisation of GEF 2020/1.1:

GEF 2020/1.1 provides two new features, compared to GEF 2019/1.3.

1. The JEFF-3.3 decay table is used for the calculation of isomeric yields (contributed by Kilian Kern). The JEFF-3.1.1 decay tables or the nuclear properties from NUBASE-2016 can still be used, when GEF is compiled with the corresponding file of nuclear  properties.

2. Calculations with a filter on a specific fission mode can be performed.
(See Readme.txt for details!)



Mass yields of U235T in comparison with JEFF 3.3

The mass distribution of 235U(nth,f) from GEF-2019/1.1 (red points) in comparison with the JEFF 3.3 evalution (black symbols with error bars). The calculated contributions from different fission channels are traced in green. 10 million events have been calculated.


An extended version of GEF-2020/1.1 that includes delayed processes (output of delayed-neutron multiplicities, delayed-neutron emitters, cumulative fission-fragment yields in ENDF format) is available on demand.
It provides also an option for producing random files of fission-fragment yields in ENDF format.

We are happy about any feed-back (mail to schmidt-erzhausen<at>t_online.de). This helps to correct errors, to improve the quality of the model and to better respond to the needs and preferences of the users.

Use of the GEF code is subject to the GNU GENERAL PUBLIC LICENSE agreement that you find here: <License>.




Stand-alone version (Monte-Carlo method)

The stand-alone version of the GEF code is written in FreeBASIC (a). The FreeBASIC compiler produces binary code from the same source on Windows (b) and on Linux. The executable uses the C library.  For  the Windows version, a GUI is provided, written in JustBasic (c). The Windows version runs also on Linux with Wine (d).  The Windows version runs also on OS X (e) with Wine (d). 

a) FreeBASIC is available from http://www.freebasic.net/ with no cost.
b) Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
c) JustBasic is available from http://www.justbasic.com/ with no cost.
d) Wine is a windows compatibility layer for Linux and Mac OS X (http://www.winehq.org/).
e) OS X is a trademark of Apple Inc., registered in the U.S. and other countries.

Quick start on Windows:

Quick start on Linux:


Windows version

Input mask of the graphical user interface:

GUI for GEF on Windows



For Windows and Linux

Complete package


Documentation

Readme file (Technical information, list of relevant publications)
JEFF-Report 24, part I (Comprehensive documentation of the GEF model.)
JEFF-Report 24, part II (Technical information on the GEF code.)

Source (for Windows and Linux)

Source files

Data

Input files for extended input options
Distribution of entrance energies (example)
List of input parameters (example)
See Readme file for more detailed information.
Output
Data tables in XML-assisted format (example)  
List-mode file (example)   (short sample of most complete event list)
Raw data for the multi-variate distribution of fission-fragment yields from calculations with perturbed parameters (example)
See Readme file for more detailed information.


You may consider using the Windows version of GEF on Linux with Wine in order to profit from the more comfortable input handling offered by the graphical user interface. This option may also solve problems of missing libraries under Linux.



Subroutine (Folding method) 

The subroutine aims for being used in combination with other nuclear-reaction codes. For a given fissioning nucleus with excitation energy E* and angular momentum I it calculates complete distributions of a number of fission observables before emission of prompt neutrons and prompt gamma radiation with the GEF model.

Documentation

Technical description of the subroutine

FreeBASIC version

In preparation

FORTRAN version

In preparation