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Abstract
In  nuclear  fission,  a  heavy  nucleus  splits  into  two
fragments, driven by the Coulomb repulsion between
the positively charged protons. The fission process is
governed by the potential energy and basic transport
properties  of  nuclear  matter  like  inertial  mass  and
viscosity.  While  inertia  induces  features  of  memory,
viscosity  attenuates  these  features  by  damping.
Exploring signatures of memory in fission is  crucial
for  overcoming  the  current  severe  lack  of
experimental  information on  the  transport  properties
of  nuclear  matter.  Based  on  an  analysis  of  hitherto
unexplained anomalies in fission-fragment yields and
total kinetic energies, we show that the memory of the
conditions  near  the  second  barrier  in  the  mass-
asymmetry  degree  of  freedom  is  preserved  until
scission.  Our  results  are  in  severe  conflict  with  the
widely  used  assumption  that  the  role  of  collective
inertia  in  fission  dynamics  is  negligible.  They
therefore  falsify  the  validity  of  approaches
disregarding the influence of inertia, in particular the
use  of  the  Smoluchowski  equation1 in  fission
modeling.  Concomitantly,  our  work  reveals  that  the
widespread assumption of local statistical equilibrium
in all collective degrees of freedom along the fission
path,  which  is  the  foundation  of  the  scission-point
model, is violated.

Introduction
The properties and the behaviour of the matter in
our environment that we normally experience are
determined  by  the  electric  forces  between  the
electrons  of  the  atoms  and  molecules  on  an
energy scale of a few electron Volts (eV). On a
scale  of  about  1  million  times  higher  energies,
dynamical  processes  in  and  between  atomic
nuclei  like  fission  and  fusion,  come  into  play.
They are governed by the nuclear forces, which
are  complex  and  not  fully  understood.  In

particular,  the  transport  properties  of  nuclear
matter, especially the nature and the magnitude of
nuclear  viscosity,  are  in  the  focus  of  intensive
research since many years. 

When we disregard the influence of gravity that
stabilizes neutron stars, dense objects of nuclear
matter can only exist in the form of atomic nuclei
with up to about 300 nucleons. Larger nuclei are
unstable  against  binary  fission  due  to  the
repulsion  of  the  constituent  protons.  Thus,
investigations  on  the  transport  coefficients  of
nuclear matter can only be performed by studying
large-scale collective motions of nuclei, whereby
fission  is  an  excellent  example.  Mesoscopic
systems, such as atomic nuclei, are small enough
that  quantum-mechanical  features  –  typical  for
microscopic  systems  –  are  important.  However,
they are large enough that their behaviour can be
understood  to  a  certain  extent  by  using
macroscopic  concepts.  These  are  a  multi-
dimensional  space  of  collective  degrees  of
freedom, a thermodynamic behaviour of intrinsic
excitations  and  others.  This  has  decisive
consequences  for  the  study  of  the  transport
properties of nuclear matter.

The nature and the magnitude of nuclear viscosity
are connected with the question,  whether nuclei
behave like water drops, where collective motions
are  underdamped,  or  like  honey  drops,  where
collective motions are overdamped. Overdamped
systems  are  in  statistical  equilibrium  of  the
available  states  at  any  moment  of  a  dynamical
process.  Conversely,  underdamped systems may
deviate from statistical equilibrium due to inertial
forces.  They arise  from converting part  of their
available  energy  to  kinetic  energy  of  the
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accessible  collective  degrees  of  freedom.  This
means  that  the  presence  of  memory  effects  in
nuclear collective motions is a clear indication for
the  influence  of  inertial  forces  on  nuclear
collective motion.

Dissipation  is  the  process  that  damps  the
collective motion of a viscous object. It converts
part  of  the  kinetic  energy  of  the  object  into
intrinsic  excitations  in  an  irreversible  process.
Dissipation  appears  in  many  scenarios.  Fission
plays  a  special  role  for  studying  nuclear
dissipation for several reasons: (I) Due to the long
mean-free  path  of  the  nucleons,  one-body
dissipation is  the dominant damping mechanism
in low-energy fissiona. Therefore, fission is ideal
for  testing  the  widely  used  wall-  and-window
formula2 for one-body dissipation. (ii) Fission at
low excitation energies offers the opportunity for
studying dissipation under the influence of pairing
correlations.  (iii)  Fission  provides  manifold
experimental  signatures  for  deducing  the
influence  of  dissipation  and  for  determining  its
magnitude  along  the  entire  fission  process.
Fission cross  sections3,  the number of neutrons,
light  charged particles  and gamma rays  emitted
before  scission4,  fluctuations  in  the  fragment
properties3, and odd-even effects in the fragment
yields5 have been exploited.

On the theoretical side, most existing models of
nuclear  dissipation  are  essentially  classical  in
nature. The major conflict is about the magnitude
of the wall formula6. Blocki et al. 2 claim that their
formulation  of  the  one-body  dissipation  is
complete  and  compatible  with  quantum
mechanics. Concerns were raised by Griffin et al.7

about additional quantum-mechanical effects and
by Pal  et  al.8 about  incomplete  chaoticity.  Both
are  assumed to reduce the  estimated dissipation

a One-body dissipation, which is realized by the transport of
single nucleons (described by the window formula) or by
reflections  of  single  nucleons  at  the  nuclear  surface
(described by the wall  formula),  is  believed to prevail  at
relatively  low  energies.  This  situation  is typical  in  the
present context. Two-body dissipation, which is realized by
nucleon-nucleon collisions prevails at higher energies.

considerably.  Despite the  effort  invested
experimentally, conclusions remain unclear, often
inconsistent, if not contradictory 4.

The driving force of fission is  the tendency for
reducing the energy that is stored in the Coulomb
repulsion  between  the  constituent  protons.  It  is
determined  by  the  potential-energy  landscape,
which is  the energy of the fissioning system as
function of its shape. Once the fission barrier is
passed, the system tends to larger elongations and,
finally,  to  the  formation  of  two  independent
fragments. The motion towards scission ends up
in an almost infinite number of final states in the
two  divided  fission  fragments.  Thus,  the
fissioning nucleus  is  an open system. However,
the fission process is accompanied by many other
processes that change its properties, for example
the shape and the inner structure, of the fissioning
system.  All  of  them  are  fed  by  the  released
Coulomb energy, and, thus, they are orthogonal to
the fission direction  9.  The transport coefficients
can be very different depending on the shape of
the  fissioning  nucleus  (see  Appendix).  In  this
work, we focus on the magnitudes of damping in
the elongation and in the mass-asymmetric degree
of freedom, respectively. The latter is connected
with  pear-like  shapes  of  the  fissioning  nucleus,
which result in fragments with different masses.

Abnormal fission yields
In  the  course  of  an  intense  search  for  relevant
experimental  information  on  the  transport
properties of nuclear matter, we noticed abnormal
effects in the fragment yields from the fission of
light actinides. An anomaly was already observed
in the 1970’s in the fission excitation functions of
several  thorium  isotopes10,11,12,13,14,15,16 and
attributed to the presence of a third minimum in
the  fission  barrier17,18,19,20,21,22.  The  abnormal
behaviour in the fragment yields has not attracted
attention before.  The impact  of  these anomalies
on nuclear technology was already pointed out in
a dedicated publication23. In this work, we stress
the importance for deducing crucial  information
on the transport properties of nuclear matter. 
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Fig. 1: Illustration of the anomalous shape of
the asymmetric peaks in the mass distribution
from spontaneous fission of 238U. The inner parts
of the asymmetric peaks are strongly suppressed, in
comparison with the data from the fission of  246Cm
and 252Cf. (Data from ENDF/B-VII24) 
Blue  symbols:  spontaneous  fission,  black  symbols:
fission  induced  by  neutrons  below  2  MeV,  red
symbols:  fission  induced  by  14-MeV  neutrons.  The
distributions from spontaneous fission and from 14-
MeV neutron-induced fission of 238U were scaled to fit
to  the  yields  from  fission  induced  by  low-energy
neutrons in the range of fragment mass 90. (In some
cases, the data from nearby nuclei are shown, due to
the lack of available data, see Table 1.)

This is only possible because of the presence of a
third  barrier.  The  anomalies  and,  in  particular,
their dependence on excitation energy  E* reflect
the magnitude of inertial mass and dissipation by
the appearance of memory effects. 

Figure  1  shows  that  in  almost  all  fissioning
systems  the  fragment-mass  distributions  from
spontaneous  fission,  thermal-neutron-induced
fission  and  14-MeV-neutron-induced  fission  are
very  similar.  For  higher  neutron  energies,  the
main difference is the higher yield near symmetry.
This  effect  is  well  known due  to  the  enhanced
yield of the symmetric fission channel, which is
favoured  by  the  macroscopic  potential.  The
observed  similarities  indicate  that  the  shell
effects,  which are behind the appearance of the
asymmetric components in the mass distribution,
are  rather  insensitive  to  a  variation  of  the
excitation  energy  of  the  fissioning  system  in
almost  all  cases.  The  theoretically  expected
reduction  of  the  shell  strength  with  increasing
excitation energy does not have an influence on
the  shape  of  the  asymmetric  components.  Only
the  data  for  spontaneous  fission  of  238U  differ
substantially  from  the  data  of  neutron-induced
fission (thermal to 14-MeV neutrons): The yields
of  nuclei  near  the  doubly-magic  132Sn  and  the
corresponding  light  fragments  are  strongly
reduced.  This  suggests  that  there is  a  particular
effect  in  the  dynamics  of  the fission process  in
this  system  appearing  at  the  lowest  excitation
energy. 

Figure 2 reveals that this suppression effect starts
to  be  seen  also  in  the  total  kinetic  energies  in
neutron-induced  fission  of  238U  at  the  lowest
incident-neutron  energies.  However,  there  is  no
suppression seen in the fission of 240Pu, even from
its ground state by spontaneous fission. A similar
dependence  of  the  shape  of  the  fragment-yield
distribution on the excitation energy was pointed
for fission of  233Pa, induced by protons on  232Th,
see Fig. 3. There, regular oscillations of the peak
positions  in  the  mass  distributions  appear.  The
peaks  of  the  asymmetric  components  move
towards larger asymmetry, when a sizable part of
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the  fission  events  is  expected  to  occur  from
lighter Pa isotopes at energies close to the fission
barrier  after  the  pre-fission  emission  of  one  or
several  neutrons.  This  brings  up  the  question
about the origin of the suppression of the fission

yields in the inner wings of the asymmetric peaks
in these specific cases. The answer is provided by
Fig. 4, which shows the evolution of the potential
energy  along  the  fission  path  for  a  series  of
systems. 

Table 1: List of the fissioning systems used in figure 1.
Nominal system 238U 246Cm 250Cf

Spontaneous fission 238U(s,f) 246Cm(sf) 252Cf(s,f)

Low-energy neutrons 238U(nfast,f), En ≈ 2 MeV 245Cm(nth,f), 
En = thermal

249Cf(nth,f), 
En = thermal

High-energy neutrons 238U(n,f), En = 14 MeV No data available No data available

Due to the lack of data, in some cases, the values of the nominal systems are not available. Data from nearby
systems are shown in these cases. This choice does not have any sizable influence on the conclusions of the
present work.

Fig. 2: Evidence for the suppression effect in TKE. Measured mean total kinetic energies (TKE) after
prompt-neutron emission of the fragments from fission of the compound nuclei 239U and 240Pu from refs. 25, 26,
27,  28, (neutron-induced and spontaneous fission). The values for spontaneous fission of  240Pu and thermal-
neutron-induced fission of 239Pu have been estimated by normalizing the pre-neutron TKE from ref. [4] to the
extrapolation of ref. [3] at En=0.586MeV down to thermal energy. The dashed line is drawn to guide the eye.
While the TKE from the fission of 240Pu shows a continuous increase with decreasing excitation energy down to
spontaneous fission, the TKE from the fission of 239U shows a bending down at the lowest excitation energies.
This bending is consistent with the suppression of events with heavy fragments near the doubly magic 132Sn
in spontaneous fission of 238U seen in Fig. 1, because these events are known to have the highest TKE values. 
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Fig. 3: Manifestation of the suppression effect in multi-chance fission of  233Pa. The upper panel
shows the position of the heavy component of the fission-fragment mass distribution from the reaction p +
232Th as a function of the excitation energy E* of the compound nucleus 233Pa, measured by Berriman et al. 29.
The peak position oscillates and shows minima at  E* = 12.5, 18 and 26 MeV. The  lower panel shows the
maximum energies (by short horizontal red lines) of the states in 232Pa (N = 141), 231Pa (N = 140) and 230Pa (N
= 139), respectively, that are populated by the emission of one to three neutrons, starting from initial states
at the above mentioned energies in 233Pa (also denoted by short horizontal red lines). They are obtained by
subtracting the respective neutron separation energies. (The neutron kinetic energies have been disregarded,
as they are much smaller.) Apparently, the final states in 232Pa, 231Pa  and 230Pa after the emission of one, two
and three neutrons, respectively, are close to the heights of the respective fission barriers. Thus, the minima
observed in the upper panel correspond to the thresholds of 2nd, 3rd and 4th – chance fission, which are also
depicted in the upper panel. The increase of the mean fragment masses above the kink is consistent with the
appearance of fission events from low excitation energies at the onset of the next-chance fission with the
suppression of compact shapes by the third barrier that we postulate in the present work. 
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Fig.  4:  Schematic  drawing  of  the  potential  energy
along the fission path. The curves for Z<98 are displaced
by  ∆E=(98-Z)MeV for better visibility. The drawing is based
on experimental  information about the heights of  the first
and the second barrier above the ground state (elongation =
0) as well as on the depth of the second minimum, see Table
2. The oscillations that form the multi-humped fission barrier
are  very  similar,  while  the  large-scale  (or  macroscopic)
behaviour that is described by the nuclear liquid-drop model
shows a trend from a broad barrier in 230Th to an appreciably
narrower one in 250Cf. This trend leads to the appearance of a
third  barrier  with  comparable  height  to  the  first  and  the
second barrier in the lighter systems. 

Table 2: Potential energy along the fission path. 

System ► 230Th ▼ 238U ▼ 240Pu ▼ 245Cm ▼ 250Cf ▼ Reference 
▼

Configura
tion ▼

Ground 
state

0 MeV 0 MeV 0 MeV 0 MeV 0 MeV Reference 
energy

First 
barrier

5.7 MeV 5.64 MeV 5.7 MeV 6.19 MeV 6.02 GEF

Second 
minimum

(3.0 MeV) 2.5 MeV 2.5 MeV 1.8 MeV (1.4 MeV) Van. 197730

Second 
barrier

6.09 MeV 5.71 MeV 5.09 MeV 4.95 MeV 4.08 MeV GEF

Third 
barrier

(6.48 MeV) (5.78 MeV) (3.27 MeV) (-1.08 MeV) (-8.66 MeV)

The values refer to specific configurations. They are used in Fig. 4. Values in parentheses are estimated by

interpolation or extrapolation of empirical trends. Values from GEF31 are based on the topographic theorem
with macroscopic barriers from Thomas-Fermi calculations and empirical ground-state shell effects. They have
been validated by measured fission probabilities.

The observed anomaly appears when the system
encounters  a  third  barrier  with  an  excitation
energy that falls below the third barrier or close to
it. The suppressed region in the inner wings of the
asymmetric  peaks  corresponds  to  very  compact
configurations  with  a  spherical  heavy  fragment
around the doubly-magic 132Sn, in agreement with
the total kinetic energy signature, see Fig. 2. It is

known that for mass splits in this region the total
kinetic energy of the fragments, which is strongly
fed  by  the  Coulomb  energy  in  the  scission
configuration,  exploits  the  Q  value  almost
completely32.  Therefore,  it  is  expected  that  the
potential  at  the  third  barrier  is  already
exceptionally high in this mass range. This makes
it rather plausible that the yields are very sensitive
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to  an  eventual  variation  of  the  shape  of  the
potential  in  direction  of  mass-asymmetric

distortions  between  the  second  and  the  third
barrier. 

Fig. 5: Shell-correction energy for the 238U nucleus in the coordinates (R,η).). The numbers at the 
contour lines give the values of the shell correction in MeV. The cuts of the contour plot are made at constant 
values of the elongation R (6.2 fm and 18 fm) and the mass asymmetry η (0 and 0.14) shown by thick white 
lines. Types of the lines correspond to those of the cuts. The three humps of the dashed line in the upper 
graph appear at the first (R = 7 fm), second (R = 9.4 fm) and third barrier (R = 13 fm), respectively, for the 
mass asymmetry η = 0.14. The dash-dotted curve on the upper graph is the macroscopic potential for 
symmetric mass split η = 0. (The figure is adapted from ref. [33].)

Figure 5 shows the calculated shell effects of the
nucleus  238U  from  a  macroscopic-microscopic
model  33 on  the  two-dimensional  plane  of
elongation and mass asymmetric distortions. The
tendency for  a  slight  shift  of  the negative shell
correction towards increased mass asymmetry is
clearly seen at the elongation of the third barrier
(R = 13 fm). This small shift can have substantial
impact on the final yields.

The  anomalies  in  the  fission  yields  depicted  in
Fig. 1, 2 and 3 have a plausible explanation in the
suppression  of  fission  events  with  trajectories
passing through compact shapes near scission. We
propose the following scenario, which is based on
an intuitive understanding of the fission dynamics
in  the  spirit  of  the  multidimensional  Langevin
dynamics, a well established approach in the field.
We refer to the Appendix for a deeper discussion.
The  suppression  effect  for  splits  with  heavy
fragments  around  123Sn  appears,  because  the
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system  runs  out  of  energy  due  to  the  high
potential  energy at  the third barrier.  The system
can  only  proceed  to  scission  by  tunneling,  and
this reduces the probability drastically. At higher
initial excitation energy, the system can cross the
third barrier  without tunneling,  even in compact
configurations.  This  behaviour  provides
information  on  the  memory  time  of  the  mass-
asymmetry degree of freedom in comparison with
the saddle-to-scission time. If the memory time is
short, the system will adapt to the potential at the
third barrier,  and we see the same narrow mass
distribution  with  the  suppression  of  heavy
fragments  around  132Sn also at  higher  excitation
energies. If the memory time is long, the system
will  retain  the  mass-asymmetry  distortions
acquired  at  or  slightly  after  passing  the  second
barrier.

Transport properties of nuclear matter
Based on the multiplicity of pre-scission neutrons,
light charged particles and gamma rays, Hilscher
and Rossner (Ref. 4, page 544) deduced a saddle-
to-scission time in low-energy fission in the order
of  10-19 to  10-20 seconds.  Although  the  values
determined  by  other  methods  do  not  agree  in
detail, most of them fall into this rather large time
span. Hilscher and Rossner also conclude that this
time span indicates that the motion from saddle to
scission is overdamped. But, as noted above, this
does not mean that the motion in all other degrees
of freedom is overdamped, too. The inertial mass
for  mass-asymmetric  distortions  varies
considerably on the way from saddle to scission:
it  even tends to diverge close to  scission,  when
the neck diameter shrinks (see Ref.  34, page 29).
This  means  that  the  motion  along  the  mass-
asymmetry  degree  of  freedom  is  considerably
slowed  down  with  increasing  elongation.
According  to  the  yield  anomalies  discussed
above, this leads us to conclude that the memory
time of asymmetric shape distortions between the
outer  barrier  and  scission  is  appreciably  longer
than 10-20 seconds. An analogy can be made with
the  explanation  for  the  width  of  the  fission-
fragment  distribution  in  the  N/Z  degree  of

freedom by a freeze-out of the zero-point motion
in  the  giant  isovector  dipole  resonance  before
scission  due  to  the  strongly  increasing  inertial
mass  in  this  degree  of  freedom  35.  As  a
consequence  of  the  increasing  inertia,  the
frequency  of  the  resonance  decreases  so  much
that  the  width  of  the  N/Z distribution  cannot
adjust any more before scission to the adiabatic
value  that  corresponds  to  the  local  statistical
equilibrium. The memory of the potential energy
at  the  second  barrier  revealed  in  our  work  is
caused  by  the  same  mechanism  in  mass-
asymmetric  distortions.  We note  that  theoretical
estimations for the nucleus  224Th 36 show a sharp
increase of both the inertia and the friction tensor
at  large  mass-asymmetry  at  elongations  slightly
beyond the macroscopic fission barrier. Thus, also
some influence of the increasing friction may be
expected.  Though,  the  magnitude of  the  inertial
mass plays an undeniable role.

The  theoretical  models  that  disregard  the
influence of inertial mass on the fission dynamics,
for  example  by  using  the  Smoluchowsky
equation1 or by assuming statistical equilibrium at
scission,  can reproduce the main features of the
measured  fission  yields,  while  details  are  still
challenging to describe. The anomaly discussed in
this work has been overlooked so far, because it
hardly  exceeds  the  uncertainties  of  these
calculations.  Our  work  emphasizes  the
significance of this anomaly and its  potential  to
advance the understanding of transport properties
of nuclear matter. In addition to the description of
the  yields  themselves,  a  crucial  test  of  current
models would be their ability for reproducing the
regular  variations  of  the  mean  masses  in  the
asymmetric  peaks  as  a  function  of  initial
excitation energy, found by Berriman et al. 29.

A  comprehensive  quantitative  dynamical
calculation  of  fission  at  low  excitation  energy,
especially when part of the trajectory consists of a
tunneling process,  challenges current theory.  No
consistent  calculation  exists.  As  a  stopgap,
Sadhukhan  and  collaborators37 used  a  hybrid
model  for  calculating  fragment  yields.  They
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combined the  transmission  through a  barrier  by
tunneling  with  classical  Langevin  dynamics
beyond the saddle. Such kind of calculation could
help  to  deduce  quantitative  conclusions  on  the
transport coefficients of nuclear matter. However,
such an undertaking is beyond the scope of this
work.

Conclusion
Our  work  provides  proof  for  the  influence  of
inertial  mass  on fission dynamics,  based on the
sign  of  memory  in  the  evolution  of  mass
asymmetry in  the fission dynamics  between the
second  barrier  and  scission.  This  finding
contradicts previous opinions about the damping
of  large-scale  collective  nuclear  motion  and
clarifies  apparent  contradictions  between
conclusions drawn from different  investigations.
On the empirical side, a perceptible influence of
memory has been deduced from a comparison of
measured  fragment-mass  distributions  with  the
result of transport calculations3 on the basis of the
Langevin equations. However, this interpretation
is less clear compared to our work, because it is
based on the excess of the width parameter with
respect to a model calculation. In contrast, on the
theoretical  side,  the  result  of  an  advanced
microscopic parameter-free calculation using the
TDSLDA  (time-dependent  super-fluid  local
density approximation) has been interpreted as the

first microscopic justification for the assumption
that the influence of inertia in fission dynamics is
irrelevant38.  Our results  are in conflict  with this
conclusion, which had been raised already by the
authors of the first  formulation of the one-body
dissipation2. They also disprove the validity of the
Smoluchowski equation in stochastic approaches
to fission or equivalent models that disregard the
influence  of  inertia39,  as  well  as  of  statistical
scission-point models  40,41,42,43. In a more general
sense,  the  improved knowledge of  the  transport
coefficients established by our analysis provides
new constraints on microscopic models that aim
to  describe  the  transport  properties  of  nuclear
matter,  in  particular  in  large-scale  collective
motion. 
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Appendix

Stochastic differential equations
The terms „potential energy”, „inertial mass“ and
„viscosity“  are  well  known  for  describing  the
dynamical  processes  of  massive  objects  in  our
environment. The corresponding potential, inertial
and friction forces form the decisive ingredients
of the Fokker-Plank differential equation44 or the
equivalent  Langevin  equations  45 b.  The  inertial
mass determines the kinetic energy of an object
that  moves with a certain velocity. The potential
energy  is  the  work  that  has  to  be  invested  for
displacing the object against a conservative force.
This  means that  the energy can be retrieved by
inverting  the  displacement.  Viscosity  is  the
property  of  a  medium  that  slows  down  the
velocity  of  a  moving  object  by  dissipating  its
ordered  energy  (e.g.  the  kinetic  energy)  into  a
disordered  form  (e.g.  heat)  in  an  irreversible
process. Viscosity has an intimate connection with
a  random  force,  which  is  expressed  by  the
Einstein  relation.  It  adds  fluctuations  to  the
dynamics.

Modeling of fission dynamics
The  appropriate  microscopic  approach  for  the
description of a nucleus would be to consider the
forces that act between any nucleon with all the
others  and  to  solve  the  appropriate  differential
equations  of  motion.  This  is  a  tremendously
complex task. The problem may be simplified by
considering that a nucleus has several properties,
which  resemble  those  of  a  classical  drop  of  a
liquid.  Some of  those are  a  constant  volume,  a
well  defined  surface,  and  a  self-consistent
adjustment  of the shape to the acting forces.  In
this context, the classical Langevin equations are
widely  used,  and  particularly  successful,  for
describing large-scale collective nuclear motions,
including fission, although this is not obvious. We

b It  is  not  our intention here to introduce the Fockker-
Planck equation or the Langevin equations in full detail.
For this  purpose,  we refer  to  the dedicated literature.
Our aim is to introduce the abstract deformation space
and  the  most  relevant  forces  that  determine  nuclear
collective dynamics.

here illuminate the abstractions, assumptions and
simplifications,  which  must  be  applied  for
employing  such  an  approach  that  has  been
developed for the motion of a point-like object in
a  viscous  medium  2 .  The  introduction  of  this
relatively  simple  approach  favours  an  intuitive
understanding  of  the  problem  tackled  in  the
present  work.  It  will  also  help  to  deduce  the
conditions  for  Markovian  and  non-Markovian
dynamicsc .

Multi-dimensional deformation space
In this approach, the potential energy that depends
on  the  shape  of  the  nucleus  is  commonly
expressed  by  introducing  an  abstract
multidimensional deformation space. The shape is
defined by distortions of a sphere, for example by
extending or compressing it in one direction to an
ellipsoid.  Triaxial  shapes  are  introduced  by
considering an ellipsoid with three different main
axes.  Also  a  pear-like  shape  can  be  chosen  as
additional  distortion.  In  principle,  an  infinite
number of distortions can be defined. A specific,
more  or  less  complex,  shape  corresponds  to  a
point in the multidimensional deformation space.
The potential  energy at  a specific point may be
calculated  by  the  microscopic  approach
mentioned above. For the motion of the point in
deformation space,  representing a change of the
shape, the displacement of at least some nucleons
of the nucleus is required. This is connected with
a certain kinetic energy. This defines the inertial
mass, associated with a certain kind of distortion.
However,  this  definition  is  not  unique.  Any
modification of the positions of the nucleons that
end  up in  the  same shape  is  possible.  Here  an
additional  condition,  for  example  the  motion of

c A  non-Markovian process is a random process with the
property that the future is dependent on the past. Non-
Markovian behaviour means that  the information that
characterizes  the  system  at  a  certain  moment  is  not
complete. For example, the motion of a massive object
depends on the momentum that it has acquired in the
past. The system shows non-Markovian features, if only
the positional coordinates are considered. 
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the  nucleons  with  the  lowest  associated  kinetic
energy  (see  ref.  46 about  “irrotational”  and
“rotational  flow”),  makes  the  definition  of  the
inertial mass unique. If the motion of the nucleons
is accompanied by friction, dissipation arises. The
magnitude of inertia and dissipation is given by
their respective transport coefficient. The inertial
mass and dissipation coefficients may depend on
the specific kind of shape distortion, the value of
the  corresponding  distortion  as  well  as  on
temperature and other parameters. This makes the
dynamics of the system in the multi-dimensional
deformation space rather complicated. 

Application to nuclear fission
A fissioning  nucleus  is  an  open  system.  That
means,  it  is  not  bound  with  respect  to  the
elongation degree of freedom. Instead, the motion
towards  scission  ends  up  in  an  almost  infinite
number  of  final  states  in  the  two  fission
fragments.  However,  the  fissioning  nucleus  is
bound  in  any  other  direction  in  the  multi-
dimensional  deformation  space.  In  most
directions, this can be represented by a parabola-
like potential, modulated by quantum-mechanical
shell  effectsd.  Strong  shell  effects  favour  mass-
asymmetric distortions on the way to scission that
lead  to  fission  fragments  close  to  specific
numbers of protons and/or neutrons. This is well
illustrated  by  the  double-humped  mass
distributions, shown in Fig. 1. 

The present work deals with the motion in mass-
asymmetric distortions during the directed motion
towards scission. The crucial question is, whether
the  distribution  in  mass-asymmetric  distortion
adapts quickly to the shape of the corresponding
potential  in  such  a  way  that  the  population  of
states  in  mass  asymmetry  matches  local
equilibrium at any elongation. Our analysis shows
that the distribution in mass asymmetry at or close
to  the  second  barrier  persists  up  to  scission,  if
there is no tunneling beyond the second barrier.

d Quantum-mechanical shell effects mean a grouping of 
the energies of stationary states in a potential pocket. 
There are similarities to standing waves with distinct 
frequencies of an elastic rope that is fixed on both ends.

Consequently,  the  system  behaves  non-
Markovian-like in the mass-asymmetric direction,
if only the deformation values are considered and
velocities are disregarded: It has a memory on its
dynamic evolution at former times. 
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