Transport properties of nuclear matter from anomalous fission yields
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Abstract

In nuclear fission, a heavy nucleus splits into two
fragments, driven by the Coulomb repulsion between
the positively charged protons. The fission process is
governed by the potential energy and basic transport
properties of nuclear matter like inertial mass and
viscosity. While inertia induces features of memory,
viscosity attenuates these features by damping.
Exploring signatures of memory in fission is crucial
for overcoming the current severe lack of
experimental information on the transport properties
of nuclear matter. Based on an analysis of hitherto
unexplained anomalies in fission-fragment yields and
total kinetic energies, we show that the memory of the
conditions near the second barrier in the mass-
asymmetry degree of freedom is preserved until
scission. Our results are in severe conflict with the
widely used assumption that the role of collective
inertia in fission dynamics is negligible. They
therefore falsify the wvalidity of approaches
disregarding the influence of inertia, in particular the
use of the Smoluchowski equation' in fission
modeling. Concomitantly, our work reveals that the
widespread assumption of local statistical equilibrium
in all collective degrees of freedom along the fission
path, which is the foundation of the scission-point
model, is violated.

Introduction

The properties and the behaviour of the matter in
our environment that we normally experience are
determined by the electric forces between the
electrons of the atoms and molecules on an
energy scale of a few electron Volts (eV). On a
scale of about 1 million times higher energies,
dynamical processes in and between atomic
nuclei like fission and fusion, come into play.
They are governed by the nuclear forces, which
are complex and not fully understood. In

particular, the transport properties of nuclear
matter, especially the nature and the magnitude of
nuclear viscosity, are in the focus of intensive
research since many years.

When we disregard the influence of gravity that
stabilizes neutron stars, dense objects of nuclear
matter can only exist in the form of atomic nuclei
with up to about 300 nucleons. Larger nuclei are
unstable against binary fission due to the
repulsion of the constituent protons. Thus,
investigations on the transport coefficients of
nuclear matter can only be performed by studying
large-scale collective motions of nuclei, whereby
fission is an excellent example. Mesoscopic
systems, such as atomic nuclei, are small enough
that quantum-mechanical features — typical for
microscopic systems — are important. However,
they are large enough that their behaviour can be
understood to a certain extent by using
macroscopic concepts. These are a multi-
dimensional space of collective degrees of
freedom, a thermodynamic behaviour of intrinsic
excitations and others. This has decisive
consequences for the study of the transport
properties of nuclear matter.

The nature and the magnitude of nuclear viscosity
are connected with the question, whether nuclei
behave like water drops, where collective motions
are underdamped, or like honey drops, where
collective motions are overdamped. Overdamped
systems are in statistical equilibrium of the
available states at any moment of a dynamical
process. Conversely, underdamped systems may
deviate from statistical equilibrium due to inertial
forces. They arise from converting part of their
available energy to kinetic energy of the



accessible collective degrees of freedom. This
means that the presence of memory effects in
nuclear collective motions is a clear indication for
the influence of inertial forces on nuclear
collective motion.

Dissipation is the process that damps the
collective motion of a viscous object. It converts
part of the kinetic energy of the object into
intrinsic excitations in an irreversible process.
Dissipation appears in many scenarios. Fission
plays a special role for studying nuclear
dissipation for several reasons: (I) Due to the long
mean-free path of the nucleons, one-body
dissipation is the dominant damping mechanism
in low-energy fission®. Therefore, fission is ideal
for testing the widely used wall- and-window
formula® for one-body dissipation. (ii) Fission at
low excitation energies offers the opportunity for
studying dissipation under the influence of pairing
correlations. (iii) Fission provides manifold
experimental signatures for deducing the
influence of dissipation and for determining its
magnitude along the entire fission process.
Fission cross sections®, the number of neutrons,
light charged particles and gamma rays emitted
before scission?, fluctuations in the fragment
properties®, and odd-even effects in the fragment
yields® have been exploited.

On the theoretical side, most existing models of
nuclear dissipation are essentially classical in
nature. The major conflict is about the magnitude
of the wall formula®. Blocki et al. * claim that their
formulation of the one-body dissipation is
complete and compatible with quantum
mechanics. Concerns were raised by Griffin et al.”
about additional quantum-mechanical effects and
by Pal et al.® about incomplete chaoticity. Both
are assumed to reduce the estimated dissipation

a One-body dissipation, which is realized by the transport of
single nucleons (described by the window formula) or by
reflections of single nucleons at the nuclear surface
(described by the wall formula), is believed to prevail at
relatively low energies. This situation is typical in the
present context. Two-body dissipation, which is realized by
nucleon-nucleon collisions prevails at higher energies.

considerably. Despite the effort invested
experimentally, conclusions remain unclear, often
inconsistent, if not contradictory *.

The driving force of fission is the tendency for
reducing the energy that is stored in the Coulomb
repulsion between the constituent protons. It is
determined by the potential-energy landscape,
which is the energy of the fissioning system as
function of its shape. Once the fission barrier is
passed, the system tends to larger elongations and,
finally, to the formation of two independent
fragments. The motion towards scission ends up
in an almost infinite number of final states in the
two divided fission fragments. Thus, the
fissioning nucleus is an open system. However,
the fission process is accompanied by many other
processes that change its properties, for example
the shape and the inner structure, of the fissioning
system. All of them are fed by the released
Coulomb energy, and, thus, they are orthogonal to
the fission direction °. The transport coefficients
can be very different depending on the shape of
the fissioning nucleus (see Appendix). In this
work, we focus on the magnitudes of damping in
the elongation and in the mass-asymmetric degree
of freedom, respectively. The latter is connected
with pear-like shapes of the fissioning nucleus,
which result in fragments with different masses.

Abnormal fission yields

In the course of an intense search for relevant
experimental information on the transport
properties of nuclear matter, we noticed abnormal
effects in the fragment yields from the fission of
light actinides. An anomaly was already observed
in the 1970’s in the fission excitation functions of
several thorium isotopes'?,",2,3 ¥ 1516  and
attributed to the presence of a third minimum in
the fission barrier'”,'® 202122 The abnormal
behaviour in the fragment yields has not attracted
attention before. The impact of these anomalies
on nuclear technology was already pointed out in
a dedicated publication®. In this work, we stress
the importance for deducing crucial information

on the transport properties of nuclear matter.
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Fig. 1: lllustration of the anomalous shape of
the asymmetric peaks in the mass distribution
from spontaneous fission of 2*2U. The inner parts
of the asymmetric peaks are strongly suppressed, in
comparison with the data from the fission of #Cm
and #2Cf. (Data from ENDF/B-VII?#)

Blue symbols: spontaneous fission, black symbols:
fission induced by neutrons below 2 MeV, red
symbols: fission induced by 14-MeV neutrons. The
distributions from spontaneous fission and from 14-
MeV neutron-induced fission of 233U were scaled to fit
to the yields from fission induced by low-energy
neutrons in the range of fragment mass 90. (In some
cases, the data from nearby nuclei are shown, due to
the lack of available data, see Table 1.)

This is only possible because of the presence of a
third barrier. The anomalies and, in particular,
their dependence on excitation energy E* reflect
the magnitude of inertial mass and dissipation by
the appearance of memory effects.

Figure 1 shows that in almost all fissioning
systems the fragment-mass distributions from
spontaneous fission, thermal-neutron-induced
fission and 14-MeV-neutron-induced fission are
very similar. For higher neutron energies, the
main difference is the higher yield near symmetry.
This effect is well known due to the enhanced
yield of the symmetric fission channel, which is
favoured by the macroscopic potential. The
observed similarities indicate that the shell
effects, which are behind the appearance of the
asymmetric components in the mass distribution,
are rather insensitive to a variation of the
excitation energy of the fissioning system in
almost all cases. The theoretically expected
reduction of the shell strength with increasing
excitation energy does not have an influence on
the shape of the asymmetric components. Only
the data for spontaneous fission of ***U differ
substantially from the data of neutron-induced
fission (thermal to 14-MeV neutrons): The yields
of nuclei near the doubly-magic '*Sn and the
corresponding light fragments are strongly
reduced. This suggests that there is a particular
effect in the dynamics of the fission process in
this system appearing at the lowest excitation
energy.

Figure 2 reveals that this suppression effect starts
to be seen also in the total kinetic energies in
neutron-induced fission of **U at the lowest
incident-neutron energies. However, there is no
suppression seen in the fission of **°Pu, even from
its ground state by spontaneous fission. A similar
dependence of the shape of the fragment-yield
distribution on the excitation energy was pointed
for fission of **’Pa, induced by protons on ***Th,
see Fig. 3. There, regular oscillations of the peak
positions in the mass distributions appear. The
peaks of the asymmetric components move
towards larger asymmetry, when a sizable part of



the fission events is expected to occur from
lighter Pa isotopes at energies close to the fission
barrier after the pre-fission emission of one or
several neutrons. This brings up the question
about the origin of the suppression of the fission

yields in the inner wings of the asymmetric peaks
in these specific cases. The answer is provided by
Fig. 4, which shows the evolution of the potential
energy along the fission path for a series of
systems.

Table 1: List of the fissioning systems used in figure 1.

Nominal system 38U *°Cm 20Cf
Spontaneous fission 28U (s,f) #°Cm(sf) 22Cf(s,f)
Low-energy neutrons | “*U(ngs,f), E, ® 2 MeV | **Cm(ng,f), PCf(ng,f),

E, = thermal E, = thermal
High-energy neutrons | ?*U(n,f), E, = 14 MeV | No data available No data available

Due to the lack of data, in some cases, the values of the nominal systems are not available. Data from nearby
systems are shown in these cases. This choice does not have any sizable influence on the conclusions of the
present work.
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Fig. 2: Evidence for the suppression effect in TKE. Measured mean total kinetic energies (TKE) after
prompt-neutron emission of the fragments from fission of the compound nuclei 23°U and ?*°Pu from refs. %, %6,
2728 (neutron-induced and spontaneous fission). The values for spontaneous fission of #*°Pu and thermal-
neutron-induced fission of ***Pu have been estimated by normalizing the pre-neutron TKE from ref. [4] to the
extrapolation of ref. [3] at E,=0.586MeV down to thermal energy. The dashed line is drawn to guide the eye.
While the TKE from the fission of ?*°Pu shows a continuous increase with decreasing excitation energy down to
spontaneous fission, the TKE from the fission of 2°U shows a bending down at the lowest excitation energies.
This bending is consistent with the suppression of events with heavy fragments near the doubly magic 3?Sn

in spontaneous fission of 28U seen in Fig. 1, because these events are known to have the highest TKE values.
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Fig. 3: Manifestation of the suppression effect in multi-chance fission of **3Pa. The upper panel
shows the position of the heavy component of the fission-fragment mass distribution from the reaction p +

22Th as a function of the excitation energy E* of the compound nucleus #*3*Pa, measured by Berriman et al. 29,
The peak position oscillates and shows minima at E* = 12.5, 18 and 26 MeV. The lower panel shows the
maximum energies (by short horizontal red lines) of the states in 23?Pa (N = 141), *3'Pa (N = 140) and %*°Pa (N
= 139), respectively, that are populated by the emission of one to three neutrons, starting from initial states
at the above mentioned energies in #**Pa (also denoted by short horizontal red lines). They are obtained by
subtracting the respective neutron separation energies. (The neutron kinetic energies have been disregarded,
as they are much smaller.) Apparently, the final states in ?*Pa, 23!Pa and *°Pa after the emission of one, two
and three neutrons, respectively, are close to the heights of the respective fission barriers. Thus, the minima
observed in the upper panel correspond to the thresholds of 2", 3™ and 4™ - chance fission, which are also
depicted in the upper panel. The increase of the mean fragment masses above the kink is consistent with the
appearance of fission events from low excitation energies at the onset of the next-chance fission with the
suppression of compact shapes by the third barrier that we postulate in the present work.
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Fig. 4: Schematic drawing of the potential energy
along the fission path. The curves for Z<98 are displaced
by AE=(98-Z)MeV for better visibility. The drawing is based
on experimental information about the heights of the first
and the second barrier above the ground state (elongation =
0) as well as on the depth of the second minimum, see Table
2. The oscillations that form the multi-humped fission barrier
are very similar, while the large-scale (or macroscopic)
behaviour that is described by the nuclear liquid-drop model
shows a trend from a broad barrier in 23°Th to an appreciably
narrower one in 2°°Cf. This trend leads to the appearance of a
third barrier with comparable height to the first and the
second barrier in the lighter systems.

Elongation / arbitrary units

Table 2: Potential energy along the fission path.

System » |*°Th ¥ U v *pu v *>Cm v “0Cf v Reference
v

Configura

tion V¥

Ground 0 MeV 0 MeV 0 MeV 0 MeV 0 MeV Reference

state energy

First 5.7 MeV 5.64 MeV 5.7 MeV 6.19 MeV 6.02 GEF

barrier

Second |[(3.0 MeV) |2.5MeV 2.5 MeV 1.8 MeV (1.4 MeV) |Van. 1977%°

minimum

Second 6.09 MeV 5.71 MeV 5.09 MeV 495 MeV [4.08 MeV GEF

barrier

Third (6.48 MeV) |[(5.78 MeV) |(3.27 MeV) |(-1.08 MeV) |(-8.66 MeV)

barrier

The values refer to specific configurations. They are used in Fig. 4. Values in parentheses are estimated by

interpolation or extrapolation of empirical trends. Values from GEF®! are based on the topographic theorem
with macroscopic barriers from Thomas-Fermi calculations and empirical ground-state shell effects. They have

been validated by measured fission probabilities.

The observed anomaly appears when the system
encounters a third barrier with an excitation
energy that falls below the third barrier or close to
it. The suppressed region in the inner wings of the
asymmetric peaks corresponds to very compact
configurations with a spherical heavy fragment
around the doubly-magic **Sn, in agreement with
the total kinetic energy signature, see Fig. 2. It is

known that for mass splits in this region the total
kinetic energy of the fragments, which is strongly
fed by the Coulomb energy in the scission
configuration, exploits the Q value almost
completely®. Therefore, it is expected that the
potential at the third barrier is already
exceptionally high in this mass range. This makes
it rather plausible that the yields are very sensitive



to an eventual variation of the shape of the

distortions between the second and the third

potential in direction of mass-asymmetric barrier.
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Fig. 5: Shell-correction energy for the 22U nucleus in the coordinates (R,n). The numbers at the
contour lines give the values of the shell correction in MeV. The cuts of the contour plot are made at constant
values of the elongation R (6.2 fm and 18 fm) and the mass asymmetry n (0 and 0.14) shown by thick white
lines. Types of the lines correspond to those of the cuts. The three humps of the dashed line in the upper
graph appear at the first (R = 7 fm), second (R = 9.4 fm) and third barrier (R = 13 fm), respectively, for the
mass asymmetry n = 0.14. The dash-dotted curve on the upper graph is the macroscopic potential for
symmetric mass split n = 0. (The figure is adapted from ref. [33].)

Figure 5 shows the calculated shell effects of the
nucleus **U from a macroscopic-microscopic
model ** on the two-dimensional plane of
elongation and mass asymmetric distortions. The
tendency for a slight shift of the negative shell
correction towards increased mass asymmetry is
clearly seen at the elongation of the third barrier
(R = 13 fm). This small shift can have substantial
impact on the final yields.

The anomalies in the fission yields depicted in
Fig. 1, 2 and 3 have a plausible explanation in the
suppression of fission events with trajectories
passing through compact shapes near scission. We
propose the following scenario, which is based on
an intuitive understanding of the fission dynamics
in the spirit of the multidimensional Langevin
dynamics, a well established approach in the field.
We refer to the Appendix for a deeper discussion.
The suppression effect for splits with heavy
fragments around '*Sn appears, because the



system runs out of energy due to the high
potential energy at the third barrier. The system
can only proceed to scission by tunneling, and
this reduces the probability drastically. At higher
initial excitation energy, the system can cross the
third barrier without tunneling, even in compact
configurations. =~ This  behaviour  provides
information on the memory time of the mass-
asymmetry degree of freedom in comparison with
the saddle-to-scission time. If the memory time is
short, the system will adapt to the potential at the
third barrier, and we see the same narrow mass
distribution with the suppression of heavy
fragments around '**Sn also at higher excitation
energies. If the memory time is long, the system
will retain the mass-asymmetry distortions
acquired at or slightly after passing the second
barrier.

Transport properties of nuclear matter

Based on the multiplicity of pre-scission neutrons,
light charged particles and gamma rays, Hilscher
and Rossner (Ref. 4, page 544) deduced a saddle-
to-scission time in low-energy fission in the order
of 10" to 10® seconds. Although the values
determined by other methods do not agree in
detail, most of them fall into this rather large time
span. Hilscher and Rossner also conclude that this
time span indicates that the motion from saddle to
scission is overdamped. But, as noted above, this
does not mean that the motion in all other degrees
of freedom is overdamped, too. The inertial mass
for mass-asymmetric distortions varies
considerably on the way from saddle to scission:
it even tends to diverge close to scission, when
the neck diameter shrinks (see Ref. 3, page 29).
This means that the motion along the mass-
asymmetry degree of freedom is considerably
slowed down with increasing elongation.
According to the yield anomalies discussed
above, this leads us to conclude that the memory
time of asymmetric shape distortions between the
outer barrier and scission is appreciably longer
than 10 seconds. An analogy can be made with
the explanation for the width of the fission-
fragment distribution in the N/Z degree of

freedom by a freeze-out of the zero-point motion
in the giant isovector dipole resonance before
scission due to the strongly increasing inertial
mass in this degree of freedom *. As a
consequence of the increasing inertia, the
frequency of the resonance decreases so much
that the width of the N/Z distribution cannot
adjust any more before scission to the adiabatic
value that corresponds to the local statistical
equilibrium. The memory of the potential energy
at the second barrier revealed in our work is
caused by the same mechanism in mass-
asymmetric distortions. We note that theoretical
estimations for the nucleus ***Th * show a sharp
increase of both the inertia and the friction tensor
at large mass-asymmetry at elongations slightly
beyond the macroscopic fission barrier. Thus, also
some influence of the increasing friction may be
expected. Though, the magnitude of the inertial
mass plays an undeniable role.

The theoretical models that disregard the
influence of inertial mass on the fission dynamics,
for example by using the Smoluchowsky
equation' or by assuming statistical equilibrium at
scission, can reproduce the main features of the
measured fission yields, while details are still
challenging to describe. The anomaly discussed in
this work has been overlooked so far, because it
hardly exceeds the uncertainties of these
calculations. ~Our work emphasizes the
significance of this anomaly and its potential to
advance the understanding of transport properties
of nuclear matter. In addition to the description of
the yields themselves, a crucial test of current
models would be their ability for reproducing the
regular variations of the mean masses in the
asymmetric peaks as a function of initial
excitation energy, found by Berriman et al. ».

A comprehensive  quantitative = dynamical
calculation of fission at low excitation energy,
especially when part of the trajectory consists of a
tunneling process, challenges current theory. No
consistent calculation exists. As a stopgap,
Sadhukhan and collaborators® used a hybrid
model for calculating fragment yields. They



combined the transmission through a barrier by
tunneling with classical Langevin dynamics
beyond the saddle. Such kind of calculation could
help to deduce quantitative conclusions on the
transport coefficients of nuclear matter. However,
such an undertaking is beyond the scope of this
work.

Conclusion

Our work provides proof for the influence of
inertial mass on fission dynamics, based on the
sign of memory in the evolution of mass
asymmetry in the fission dynamics between the
second barrier and scission. This finding
contradicts previous opinions about the damping
of large-scale collective nuclear motion and
clarifies  apparent contradictions  between
conclusions drawn from different investigations.
On the empirical side, a perceptible influence of
memory has been deduced from a comparison of
measured fragment-mass distributions with the
result of transport calculations® on the basis of the
Langevin equations. However, this interpretation
is less clear compared to our work, because it is
based on the excess of the width parameter with
respect to a model calculation. In contrast, on the
theoretical side, the result of an advanced
microscopic parameter-free calculation using the
TDSLDA (time-dependent super-fluid local
density approximation) has been interpreted as the

first microscopic justification for the assumption
that the influence of inertia in fission dynamics is
irrelevant®®. Our results are in conflict with this
conclusion, which had been raised already by the
authors of the first formulation of the one-body
dissipation®. They also disprove the validity of the
Smoluchowski equation in stochastic approaches
to fission or equivalent models that disregard the
influence of inertia®®, as well as of statistical
scission-point models *,*'** In a more general
sense, the improved knowledge of the transport
coefficients established by our analysis provides
new constraints on microscopic models that aim
to describe the transport properties of nuclear
matter, in particular in large-scale collective
motion.
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Appendix

Stochastic differential equations

The terms ,,potential energy”, ,,inertial mass“ and
,viscosity” are well known for describing the
dynamical processes of massive objects in our
environment. The corresponding potential, inertial
and friction forces form the decisive ingredients
of the Fokker-Plank differential equation* or the
equivalent Langevin equations * °. The inertial
mass determines the kinetic energy of an object
that moves with a certain velocity. The potential
energy is the work that has to be invested for
displacing the object against a conservative force.
This means that the energy can be retrieved by
inverting the displacement. Viscosity is the
property of a medium that slows down the
velocity of a moving object by dissipating its
ordered energy (e.g. the kinetic energy) into a
disordered form (e.g. heat) in an irreversible
process. Viscosity has an intimate connection with
a random force, which is expressed by the
Einstein relation. It adds fluctuations to the
dynamics.

Modeling of fission dynamics

The appropriate microscopic approach for the
description of a nucleus would be to consider the
forces that act between any nucleon with all the
others and to solve the appropriate differential
equations of motion. This is a tremendously
complex task. The problem may be simplified by
considering that a nucleus has several properties,
which resemble those of a classical drop of a
liquid. Some of those are a constant volume, a
well defined surface, and a self-consistent
adjustment of the shape to the acting forces. In
this context, the classical Langevin equations are
widely used, and particularly successful, for
describing large-scale collective nuclear motions,
including fission, although this is not obvious. We

b It is not our intention here to introduce the Fockker-
Planck equation or the Langevin equations in full detail.
For this purpose, we refer to the dedicated literature.
Our aim is to introduce the abstract deformation space
and the most relevant forces that determine nuclear

collective dynamics.

10

here illuminate the abstractions, assumptions and
simplifications, which must be applied for
employing such an approach that has been
developed for the motion of a point-like object in
a viscous medium * . The introduction of this
relatively simple approach favours an intuitive
understanding of the problem tackled in the
present work. It will also help to deduce the
conditions for Markovian and non-Markovian
dynamics® .

Multi-dimensional deformation space

In this approach, the potential energy that depends
on the shape of the nucleus is commonly
expressed by  introducing an  abstract
multidimensional deformation space. The shape is
defined by distortions of a sphere, for example by
extending or compressing it in one direction to an
ellipsoid. Triaxial shapes are introduced by
considering an ellipsoid with three different main
axes. Also a pear-like shape can be chosen as
additional distortion. In principle, an infinite
number of distortions can be defined. A specific,
more or less complex, shape corresponds to a
point in the multidimensional deformation space.
The potential energy at a specific point may be
calculated by the microscopic approach
mentioned above. For the motion of the point in
deformation space, representing a change of the
shape, the displacement of at least some nucleons
of the nucleus is required. This is connected with
a certain kinetic energy. This defines the inertial
mass, associated with a certain kind of distortion.
However, this definition is not unique. Any
modification of the positions of the nucleons that
end up in the same shape is possible. Here an
additional condition, for example the motion of

¢ A non-Markovian process is a random process with the
property that the future is dependent on the past. Non-
Markovian behaviour means that the information that
characterizes the system at a certain moment is not
complete. For example, the motion of a massive object
depends on the momentum that it has acquired in the
past. The system shows non-Markovian features, if only

the positional coordinates are considered.



the nucleons with the lowest associated kinetic
energy (see ref. “ about “irrotational” and
“rotational flow”), makes the definition of the
inertial mass unique. If the motion of the nucleons
is accompanied by friction, dissipation arises. The
magnitude of inertia and dissipation is given by
their respective transport coefficient. The inertial
mass and dissipation coefficients may depend on
the specific kind of shape distortion, the value of
the corresponding distortion as well as on
temperature and other parameters. This makes the
dynamics of the system in the multi-dimensional
deformation space rather complicated.

Application to nuclear fission

A fissioning nucleus is an open system. That
means, it is not bound with respect to the
elongation degree of freedom. Instead, the motion
towards scission ends up in an almost infinite
number of final states in the two fission
fragments. However, the fissioning nucleus is
bound in any other direction in the multi-
dimensional deformation space. In most
directions, this can be represented by a parabola-
like potential, modulated by quantum-mechanical
shell effects’. Strong shell effects favour mass-
asymmetric distortions on the way to scission that
lead to fission fragments close to specific
numbers of protons and/or neutrons. This is well
illustrated by the double-humped mass
distributions, shown in Fig. 1.

The present work deals with the motion in mass-
asymmetric distortions during the directed motion
towards scission. The crucial question is, whether
the distribution in mass-asymmetric distortion
adapts quickly to the shape of the corresponding
potential in such a way that the population of
states in mass asymmetry matches local
equilibrium at any elongation. Our analysis shows
that the distribution in mass asymmetry at or close
to the second barrier persists up to scission, if
there is no tunneling beyond the second barrier.

d Quantum-mechanical shell effects mean a grouping of
the energies of stationary states in a potential pocket.
There are similarities to standing waves with distinct
frequencies of an elastic rope that is fixed on both ends.

11

Consequently, the system behaves non-
Markovian-like in the mass-asymmetric direction,
if only the deformation values are considered and
velocities are disregarded: It has a memory on its
dynamic evolution at former times.
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